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 Abstract—The scope of this paper is the study of the 

crankshaft torsional vibration phenomenon in internal 

combustion engines. The formulation, based on state equation 

solution with system steady state response calculation performed 

by transition state matrix and the convolution integral. The 

analysis considers a rubber and a viscous damper assembled to 

the crankshaft front-end. From the torsional vibrations analysis, 

it is possible to obtain the dynamic loading on each crankshaft 

section and these loads can be applied as boundary conditions in 

a finite element model to predict the safety factor of the 

component and compare the system behavior with rubber and 

viscous damping options. By this way, it is possible to emphasize 

the importance of the torsional vibrations analysis on the 

structural dimensioning of the crankshafts. 
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I. Literature Review 

 Johnston, P. R. and Shusto, L. M. [1], developed a 

technique to predict the behavior of the torsional 

vibrations in internal combustion engines at transient and 

steady state regime by the modal superposing method. 

The results are compared to the measured ones. 

 Some systems can present excessive vibrations on 

specific speeds. Draminsky was one of the first 

researchers who studied these phenomena [2]. 

Hestermann and Stone [3] concluded that these 

unexpected large angular displacements in multiples of 

the engine speed occur due to the variable inertia 

characteristics of the crank-mechanism. 

 In the past, the effects of the internal combustion 

engines variable inertia were considered to be negligible 

and were disregarded from the calculations. Recently, 

these secondary effects were verified and checked and 

they are responsible per many crankshaft structural 

failures. Paricha, M. S. [4], included these effects on the 

previous Draminsky´s studies and concluded that, in some 

cases, the interaction of these secondary forces can be 

extremely dangerous for the crankshafts. 
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 Brusa et al. [5] studied the effect of the non-constant 

moments of inertia on torsional vibration calculations. The 

introduction of functions taking into account the variation 

of the inertia over the crank throw angular position shall 

be considered, mainly in cases of large displacement 

engines, where the masses of the piston and connecting 

rods are significantly large when compared to the other 

components of the system.  

 Song et al. [6] analyzed the effect of torsional and axial 

vibration coupling at the crankshafts. Large angular 

displacements occur when the axial and torsional natural 

frequencies are equal, or, when the first one is two times 

greater than the second one. 

 Lacy [7] reported the torsional vibration analysis of 

four-cylinder gasoline engine. In his model the journals 

are connected to the main bearings taking into account the 

elastic properties of the oil film. Boysal and Rahnejat [8] 

used the same model proposed by Lacy and included the 

dynamical rigid body influence of all involved inertias on 

a multi-body model to analyze the noise generated by the 

vibrations. 

 The torsional damping coefficients of internal 

combustion engines were initially estimated by 

researchers like Den Hartog [9] and Ker Wilson [10]. 

These parameters were obtained from empirical 

determinations and in most cases, were not accurate, 

generating great variations at the dynamic response of the 

analyzed systems.  

 Theoretical and hybrid models to estimate the damping 

coefficients, were proposed by Iwamoto and Wakabayashi 

[11], which consider analytical relations between the 

damping and other measurable parameters of the engines. 

 Wang and Lim [12] obtained accurate estimation of the 

absolute damping of a single-cylinder engine motored by 

an electric motor. The first two mode shapes of the system 

were considered and the damping coefficients were 

obtained in function of the crank angle. 

 Y. Honda and T. Saito [13] studied the torsional 

vibrations at a six-cylinder Diesel engine with a rubber 

damper to reduce the vibratory effects. The transition state 

matrix methodology was considered and it was observed 

that the torsional stiffness of the rubber torsional vibration 

damper (TVD) is more significant for the system 

characteristics than the engine internal damping and even 

TVD damping. This stiffness is determined mainly by the 

rubber geometry and its chemical properties. 
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 Maragonis, I.E. [14] realized a research where the 

variation of the excitation load through the cylinders, due 

to the wear of piston rings and liner was considered.  

II. Introduction 

 A crankshaft is subjected to many periodical dynamic 

loads, generating vibrations and consequently stresses that 

shall be quantified to ensure the structural integrity of the 

component. 

 Nowadays, due to technical, commercial and 

environmental requirements, the internal combustion 

engines must operate with higher cylinder pressures and 

the components shall be optimized for the best 

performance. 

 Modern calculation methods allow a precise 

determination of the stress level at the crankshafts critical 

regions, as well as the evaluation of the fatigue strength. 

By this way, it is possible to consider safety factors that 

guarantee sufficient reliability to avoid structural failures 

and no over-sized components. 

  Initially, an analysis considering no TVD was performed 

to adjust and calibrate the engine internal damping and the 

natural frequencies of the system. In the second step it 

was considered a rubber TVD, where its power dissipation 

capability was checked for structural integrity verification. 

Finally, the calculations were done considering a viscous 

damper at the system.  

 Complete torsional vibration analysis (TVA) including 

the calculation of the vibration amplitudes at the 

crankshaft front-end, actuating torques at rear and front 

bolted connections and damper power dissipation will be 

performed for the mentioned cases. 

 Crankshaft torsional vibrations occur on internal 

combustion engines due to the periodical nature of the 

actuating torque. Basically, the TVA starts obtaining a 

mathematical model that represents the system dynamical 

characteristics, such as: Inertias, torsional stiffness and 

damping. Then, the excitation torque shall be calculated 

considering the gas load and inertia forces of the moving 

parts and a Fourier series expansion of this torque shall be 

performed. The obtained harmonics shall be applied at the 

corresponding crank throws, considering the ignition 

timing of the engine. 

III. Theoretical modeling 

 The crankshafts are subjected to torsional, axial and 

flexural vibrations, due to the periodic nature of the 

excitation loading. In this paper, only torsional vibrations 

analysis is performed and to do these verifications, it is 

necessary to determine an equivalent mathematical model 

of the system. 

 One type of analysis is performed considering a viscous 

TVD assembled to the crankshaft. Another one considers 

a double mass rubber damper to reduce the torsional 

amplitudes. The figure 1 shows the model for a single 

mass viscous damper TVA, while the figure 2 presents the 

considered model for a double mass rubber damper 

analysis. 

 
Fig. 1: Equivalent model considering a single mass viscous TVD 

 

 
Fig. 2: Equivalent model considering a double mass rubber TVD 

 

A. Inertias 

 The inertias of the system, such as: flywheel, pulleys, 

crank throws and TVD rings can be determined by CAD 

software.  

 The connecting rod mass shall be divided in two masses. 

One of them has a purely rotating motion “mrb”, while the 

other one has only oscillating motion “mab”. It is well 

known that the rotating mass of the connecting rod shall 

be considered for the crank throw inertia calculation. 

 The division of the con-rod mass “mb” including the 

bolts, bearings and bushing, can be done according to the 

following methodology: 

 

L

Lm
m b

ab
2

=    ;     
L

Lm
m b

rb

1
=              (1) 

 

 Where L  is the con-rod length, 1L  and 2L , 

respectively, the distances from the con-rod mass center to 

piston pin and crankpin geometric centers.    

 Usually, the engines have a gear train for power 

transmission to other devices. The inertia of this complete 

system shall be considered on the equivalent model. For 

example, the equivalent inertia of a device motored by 
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gear 2 with a rotational speed 
2n  related to gear 1 with a 

rotational speed 
1n  (e.g. crankshaft gear), can be done 

according to the equation: 

 

  

2

1
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2 




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


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n

n
II red

                           (2) 

 

 This reduction shall be done for all motored devices by 

the gear train referred to the crankshaft gear. 

 

B. Torsional stiffness 

 The torsional stiffness of all sections of the model can 

be calculated considering finite element models, where a 

constant torque is applied at one side of the part and the 

twist angle is obtained considering that the model is 

clamped at the other extremity. The relation between the 

torque and the calculated twist angle is the torsional 

stiffness that shall be considered at the equivalent model.  

 

 B.1 Rubber TVD 

 The dynamic stiffness of the rubber TVD is determined 

considering also a finite element model. To perform this 

calculation we can adopt a dynamic shear modulus of the 

rubber in the range of: 1.5 MPa  G  3.0 MPa, according 

to reference [15]. The Poisson’s ratio is: 0.49. 

 

 
Fig. 3: Double mass rubber damper 

 

B.2 Viscous TVD 

 The viscous damper torsional stiffness can be 

determined according to the following methodology, see 

ref. [16], in function of the silicone kinematic viscosity. 

The dynamic stiffness is: 

SGsKt =                                 (3) 

Where: 
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 S  – clearance factor [m³] 

 T  – absolute mean temperature of the silicone film [K] 

 j  – order number 

 n  – engine speed [s-1] 

 01G , 01B , 1101,aa : numerical values for these factors 

can be obtained at reference [16]. 

 

C. Damping coefficients 

 The relative damping coefficients of the system “Cr” 

can be obtained from the loss angle property, as will be 

shown. The loss angle calculation can be done by the 

equation (4), considering that “” is the engine angular 

speed: 

Kt

Cr 



== tan                              (4) 

 

 At the resonance, we can define the loss factor property: 

 

Kt

Cr
d n
=                                  (5) 

 

 It is possible to observe that at natural frequency “n” 

the loss factor is equal to the loss angle and with the 

determined torsional stiffness “Kt”, we can determine the 

relative damping coefficient. 

 According to the engine type it is possible to know the 

mean loss factor and the Table I presents the common 

values of this property. For other engine types see 

references [16] and [17]. 

 

Engine Type Loss factor (d) 

In-line 4 cylinders (TC) 0.055 

In-line 6 cylinders (TC) 0.035 

 
TABLE I. 4-stroke Diesel engines loss factors 

 

 The absolute damping coefficients, considered at the 

position of the crank throw inertias, are basically due to 

the contact between the piston rings and the block and oil 

films. It is recommended to determine these properties 

experimentally, running the engine without TVD and 

measuring the torsional vibration amplitudes at the 

dynamometer. After, the calculated vibration amplitudes 

shall be adjusted to the measured ones. In this specific 
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case we determined a value of 2.0 N.m.s/rad for this 

property. 

 

 C.1 Rubber TVD 

 For the determination of rubber TVD relative damping 

coefficient, we can adopt a loss factor in the range of: 0.15 

 d  0.25, according to reference [16]. 

 

 C.2 Viscous TVD 

 The relative damping coefficient is determined as 

follows: 

 


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Where:  

 n 2=  – engine angular speed [rad/s] 

 

D. Excitation torque 

 The torque is calculated from the resultant tangential 

force multiplied by the crank radius. Initially, the 

kinematics of the crank mechanism will be determined for 

further dynamic loading computation. The presented 

methodology can be fully revised on references [18] and 

[19].  

 Only the resultant tangential force “Ft” shall be 

computed for the torsional vibration analysis. The other 

loads, such as resultant radial force “Fr”, are important for 

the crankshaft structural analysis, but these calculations 

are out of the scope of this work. The resultant tangential 

force is obtained considering the gas load and the inertia 

forces of the system. 

 The gas load can be obtained by the equation: 
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=                            (7) 

 

Where:  

 dp – piston diameter [mm] 

 p – cylinder pressure [MPa] 

 

 The tangential gas load can be computed according to 

the following equation: 
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 The oscillating inertia force can be obtained as follows: 
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Where: 

 am  – oscillating masses 

   – crank angle 

 

 By the same way, the tangential inertia force is: 

 





cos

)sin( +
= iata FF

                            (10) 

 

 Thus, the resultant tangential force is: 

 

tatgt FFF +=                              (11) 

 

 Finally, the excitation torque {T(t)} can be determined 

just multiplying the resultant tangential force by the 

crankshaft radius: 

 

rFMtT tt ==)(                                (12) 

   

E. Dynamical characteristics of the system 

 The differential equation of the system, representing the 

dynamic characteristics for mechanical vibrations can be 

determined according to the following procedures. More 

detailed information about this subject can be found at 

references [20], [21] and [22]. 

 

)}({)}({][)}({][)}({][
...

tTtKttCtM =++         (13) 

  

Where: 

 [M] – inertia matrix, which dimension is 10x10 in case  

 of figure 1 and 11x11 in case of figure 2 

 [C] – viscous damping matrix 

 [Kt] – stiffness matrix 

 {(t)} – torsional vibration amplitude 

 {T(t)} – excitation torque defined by equation 12 

 

 The number of degrees of freedom (NDF) of the system 

is equal to the number of inertias. 

 The oscillating masses shall be replaced by equivalent 

inertias, which must have the same kinetic energy of the 

piston motion. An average inertia will be used for the 

calculations during one crankshaft revolution. The 

equation hereunder quantifies this inertia, that must be 

introduced only at the crank throw inertia matrix 

positions. 
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 As mentioned before, the excitation torque that actuates 

on the crankshaft varies according to the crank angle, 

engine speed and the engine load. This vector is presented 

by the following equation and in the case of the viscous 

TVD model, it has 11 degrees of freedom: 

 

   Ttttttt tMtMtMtMtMtMtT 0)()()()()()(0000)(
654321

=   (15) 

  

The torque that actuates in each crank throw is a periodic 

excitation function and the solution for this kind of system 

is found through a finite Fourier series that can be revised 

at reference [23]. On this study, it will be considered 24 

terms for the series expansion. 

 

 
=

− ++=
24

1

0

2
)(

n

tink

n
tink

n

k
k

t eCeC
A

tM          (16) 

  

Where 
k

nC  and 
k

nC  are complex coefficient and its 

conjugate of the Fourier series, and k  = 1, 2, ... ,6 

(cylinder number). 

 

F. State equation solution 

 It is possible to express the dynamic behavior of the 

crankshaft through the first order differential state 

equation of the system. For detailed explanation see 

reference [20]: 
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Where: 
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For viscous TVD model: 
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G. System steady state response calculation 

 The response of a periodic excited vibratory linear 

system, represented by its state equation, can be obtained 

via the fundamental matrix, or transition state matrix, and 

the convolution integral. 

 Disregarding the transient and the constant Fourier term 

and solving the harmonic terms summation, the system 

response can be obtained as follows: 

tin

n

tin

nnn egegttx − +==  )()(           (18) 

 

Frequency response vector: 

nnn bFg =   ;   
nnn bFg =                 (19) 

Frequency matrix: 

1)( −−= AIinFn     ;    
1)( −−−= AIinFn      (20) 

 Therefore, the global vibration amplitude can be 

computed by the equation: 
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 n = 1 ... 24 (Fourier series term) 

 j = 1 ... NDF 

 

 Knowing the torsional vibration amplitude of two 

consecutive inertias, it is possible to calculate the 

actuating torque according to the following equation: 

 

111 −−− −= jjjj KtT    ;    j = 1 ... NDF        (22) 

  

 It is important to note that the constant Fourier term 

must be added to the calculated torsional vibration torque, 

taking into account the number of cylinders ahead the 

considered inertia. For example: The constant Fourier 

term must be summed 6 times to the calculated torque 

between the flywheel and the sixth cylinder. 

 

 For rubber TVD, it is also possible to calculate the 

actuating shear stress and maximum deformation of the 

rubber. The maximum shear stress shall not exceed 0.3 ... 

0.4 MPa and its calculation can be done, through the 

relation of the torque between the damper ring and hub 

and the rubber section modulus under shear: 

 

j

jj

j
Wt

Kt−
=

3
   ;  j = 1, 2 (for a double TVD)  (23) 

 

 The maximum deformation of the rubber shall not 

exceed 15 ... 20% and its calculation can be done by the 

following equation, considering that for small angles 

( )  tg : 
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Where: 

 Wt – rubber section modulus under shear 

 Kt – rubber torsional stiffness 

  – torsional vibration amplitude 

 R – maximum radius of the rubber at TVD 

 e – rubber thickness 

  

 These permissible parameters are stipulated by TVD 

manufactures and its reliability is obtained from many 

tests at dynamometers and vehicles. 

IV. Conclusions 

 A formulation to calculate the torsional vibration of 

internal combustion engine crankshafts was presented. 

 It includes also the influence of rubber or viscous 

dampers and can be used to estimate the cycle life of the 

crankshaft and absorbers. The validation of the presented 

methodology can be found in the paper "Experimental 

Validation of a Methodology for Torsional Vibration 

Analysis in Internal Combustion Engines" written by the 

same authors. 
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